Bremen

Y

R e e e

Virtual Reality &

Physically-Based Simulation
Mass-Spring-Systems

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

Bremen

W g

[a)
)
B

= Definition:
A mass-spring system is a system consisting of:
1. A set of point masses m; with positions x; and velocities v;,i=1...n;

2. Asetofsprings s;; = (i, j, ks, kq) , Where sj connects
masses i and j, with rest length Ip , spring constant ks (= stiffness) and the
damping coefficient kg

= Advantages:

= Very easy to program

= |deally suited to study different kinds of solving methods

= Ubiquitous in games (cloths, capes, sometimes also for deformable objects)
= Disadvantages:

= Some parameters (in particular the spring constants) are not obvious, i.e.,
difficult to derive

= No built-in volumetric effects (e.qg., preservation of volume)

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 5

Bremen

U

Example Mass-Spring System: Cloth

-

' Cloth
' Vertex

Structural

Springs
4

Shear
Springs

Bend

’ SpNgs

G. Zachmann Virtual Reality & Simulation WS "January 2018

Mass-Spring-Systems

<N

E-X3)

B

Bremen

Y A Single Spring (Plus Damper)

= Given: masses m;j and m; with positions x; , X; i i
X: — X: _— >
= et ri = J / v I’,'I'
||Xj — X,'H fif fif
. . . - I/
= The force between particlesiandj : T A N AN
sAVAVAVAVAVAVAVAVA,
1. Force exerted by spring (Hooke's law): mil ks .
s] |
£ = ke (IIx; — x| — o) o
|
acts on particle j in the direction of j kg

2. Force exerted on i by damper: f) = —ky((vi —v;)-r;))r;

e gil i
3. Total forceoni: fJ — f + £}
4. Forceonmj: §il — _§U

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

Bremen

e "_,:,:
@ Remarks

= A spring-damper element in reality:

= Alternative spring force:

1% = xill = Lo

y
) = kerij

= Notice: from (4) it follows that the total momentum is conserved
= Momentum p=v-m
= Fundamental physical law (follows from Newton's laws)

= Note on terminology:

= English "momentum" = German "Impuls" = velocity X mass

= English "Impulse" = German "Kraftsto}" =force X time

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems

Bremen

Y Simulation of a Single Spring

= From Newton’s law, we have: X — %f

Convert differential equation (ODE) of order 2 into ODE of order 1:
x(t) = v(t)
v(t) = f(t)

Initial values (boundary values): v(ty) =vo, x(ty) = Xo

"Simulation" = "Integration of ODE's over time"
= By Taylor expansion we get:

x(t + At) = x(t) + At x(t) + O(At?)
" Analogously: v (t + At) = v(t) + At v (t)

—> This integration scheme is called explicit Euler integration

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

Bremen

Y The Algorithm for a Mass-Spring System

forall particles i
initialize x;, v;, m;

loop forever:
forall particles i

: g coll VX V-

f — f& +fo + E f(x;, v;, X;, vj)
Ji(ij)eS

forall particles 1

fi
V; + = At°—
m;
X, + = At'V,'

render the system every n-th time

f9g

f o/l = penalty force exerted by collision (e.g., from obstacles)

G. Zachmann

= gravitational force

Virtual Reality & Simulation WS "January 2018

<n
B

E-X3)

Mass-Spring-Systems

Bremen

U

= Advantages:
= Can be implemented very easily
= Fast execution per time step
= |s "trivial" to parallelize on the GPU (— "Massively Parallel Algorithms")
= Disadvantages:
= Stable only for very small time steps
- Typically At = 104 ... 1073 sec!

= With large time steps, additional energy is generated "out of thin air",
until the system explodes ©

= Example: overshooting when simulating a single spring

= Errors accumulate quickly

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

. CG %

VR =

11

Bremen

@J) Example for the Instability of Euler Integration

= Consider the differential equation

x(t) = —kx(t)

" The exact solution:

X(t) = X0 e_kt

= Euler integration does this:

x" = xt + At(—kx")
= Case At > % ;

x' = x" (1 — kAt)

\ 7
-~

<0

= xt oscillates about 0, but approaches 0 (hopefully)

'CaseAt>%: = x> oo |

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 12

Bremen

W

E-X3)

-
“
e e]

<N

=" Visualization:

position

time - \\\\

= Terminology: if k is large - the ODE is called "stiff "
= The stiffer the ODE, the smaller At has to be

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 13

Bremen

@ Visualization of Error Accumulation

Consider this ODE:

Exact solution:
r cos(t
x(t) = (st 9)
rsin(t + ¢)
= The solution by Euler integration
moves in spirals outward, no

matter how small At!

= Conclusion: Euler integration

accumulates errors, no matter

how small At!

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems

za
B

14

Bremen

U

Visualization of Differential Equations

= The general form of an ODE (ordinary differential equation):
x(t) = f(x(1), t)

= Visualization of f as a vector field:

= Notice: this vector field can vary over time!

= Solution of a boundary value problem = path through this field

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems

7. cc

VR

16

]

e
s

o

Bremen

YW Other Integrators Bl

= Runge-Kutta of order 2:

= |dea: approximate f(x(t), t) by using the derivative at positions x(t)
and x(t+ 12At)

= The integrator (w/o proof):

a; =V’ a; = if(x"“, vh)
m
b; = v+ 1Ataz b, = if(xt + 1Atal, vi 1Ataz)
2 m 2 2
xT1 = xt + Atb, vitl = vi + Atb,

= Runge-Kutta of order 4:

= The standard integrator among the explicit integration schemata
= Needs 4 function evaluations (i.e., force computations) per time step
= Order of convergence is: e(At) = O(At4)

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 17

Bremen

Y

= Runge-Kutta of order 2:

G. Zachmann

(1)

Virtual Reality & Simulation

WS

Xy= x0+h

"January 2018

y
N X
Xn Xn+1
Euler

Mass-Spring-Systems

<N

E-X3)

18

B

Bremen

W Verlet Integration .

= A general, alternative idea to increase the order of convergence:
utilize values from the past

= Verlet integration = utilize x(t-At)
= Derivation:

= Develop the Taylor series in both time directions:

x(t + At) = x(t) + Atx(t) + %AtQSE(t) — %At3'>'('(t) + 0(At?)

x(t — At) = x(t) — Atx(t) + %AtQSE(t) — %At3')'('(t) + 0(AtY)

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 19

Bremen

= Add both:
x(t + At) + x(t — At) = 2x(t) + At* %(t) + O(At?Y)

x(t + At) = 2x(t) — x(t — At) + At* %(t) + O(AtY)

= |nitialization:
x(At) = x(0) + Atv(0) + %Atz(lf(x(O), v(O)))

m

= Remark: the velocity does not occur any more!
(at least, not explicitly)

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 20

Bremen

@J) Constraints

= Big advantage of Verlet over Euler & Runge-Kutta:
it is very easy to handle constraints

= Definition: constraint = some condition on the position of one or

more mass points

= Examples:
1. A point must not penetrate an obstacle

2. The distance between two points must be constant,

or distance must be < some maximal distance

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

. CG %

VR =

21

Bremen

W .
= Example: consider the constraint

I
X1 — Xa| = o

1. Perform one Verlet integration step > xi*1

2. Enforce the constraint:

d d
Ligett _ gre S5 A
d=3(f%" —x" | —b) st
X1 0) X2

t+1 _ gt+l
X1 = X4 + dl’12

X£+1 — i;—i—l o dr12

= Problem: if several constraints are to constrain the same mass
point, we need to employ constraint satisfaction algorithms

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 22

Bremen

Y Time-Corrected Verlet Integration

= Big assumption in basic Verlet: time-delta's are constant!
= Solution for non-constant At's:
= Timestepsare: t; =1t;_1+ At;_1 and t; 1 =t; + At

= Expand Taylor series in both directions:
X(t,' -+ At,') and X(t,' — At,'_l)

= Divide the expansions by At; and At;_;, respectively,
then add both, like in the derivation of the basic Verlet
= Rearranging and omitting higher-order terms yields:

At;
Aty

At; + At 4

x(t; + At;) = x(t;) + >

(x(t;) — x(t; — Ati_1)) + X(t;)

At;

= Note: basic Verlet is a special case of time-corrected Verlet

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 23

Bremen
4

Y Implicit Integration (a.k.a. Backwards Euler)

= All explicit integration schemes are only conditionally stable

= |.e.: they are only stable for a specific range for At

= This range depends on the stiffness of the springs
= Goal: unconditionally stability

= One option: implicit Euler integration

explicit implicit

xi T = xt + Atv! xTh = xt + Atvit!

vitl =vi 4 At—f(‘) vith = vl + At—f(1)
m; mj

= Now we've got a system of non-linear, algebraic equations, with
x#*1 and v#' as unknowns on both sides - implicit integration

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 25

Bremen

W Solution Method

= Write the whole spring-mass system with vectors (n = #mass points):

o) (o)

X1 X2

.y

o1

f3i+o(x)
fi = f3i+1(X) . Mspx3n =
f},i+2(x)

\

G. Zachmann Virtual Reality & Simulation WS

Vi

v)
oy

"January 2018

VO\

mp_q
mp_

1
mn—l)
26

Mass-Spring-Systems

Bremen

= Write all the implicit equations as one big system of equations :

Myttt = Myt + Atf(x") (1)
Xt+1 _ Xt—l—AtVt+1 (2)

= Plug (2) into (1) :
Myttt = Myt + At f(x" + Atv'™) 3)

= Expand f as Taylor series:

f(x' + At vt = f(x') + % f(x") - (At vt (4)

4+ O((At vt—l—1)2)

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 27

l.a.r?Je!"'
= Plug (4) into (3):
0
Myttt = Myt + At(f(xt) + &f(xt)-(Atth))

K
= Mv' + Atf(x") + At Kv' T

= K is the Jacobi-Matrix, i.e., the derivative of f wrt. x:

0 0 0

ool Bl o g
K = -

0 0

Lhoa o e

= K is called the tangent stiffness matrix

- (The normal stiffness matrix is evaluated at the equilibrium of the system:
here, the matrix is evaluated at an arbitrary "position" of the system in phase
space, hence the name "tangent ...")

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

A
o
e e]

VR :

28

Bremen

U

= Reorder terms :

(M — At? K) vi™ = Mv' + At f(x")

= Now, this has the form:
Avitl =p
mit AeR3"™3" pc R

= Solve this system of linear equations with any of the standard
iterative solvers

= Don't use a non-iterative solver, because
= A changes with every simulation step

= We can "warm start" the iterative solver with the solution as of last frame

- Incremental computation

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

‘, CG e
VR =

29

Bremen

¥ Computation of the Stiffness Matrix §

= First, understand the anatomy of matrix K :

= A spring (i,j) adds the following four 3x3 block matrices to K :

i o)
Kii| |Kjj

3i 3

3j —

= Matrix Kjj arises from the derivation of f; = (135, f3ir1, F3i42)
wrt. Xj= (X3, X3j+1, X3j+2):

0 £ 0 .
Ox3; fa) aX:-s i+1 fai Oxzjo 3!
K,'j =
o £, ...
(9X3J. f£’>I—|—2 8X3 0 f£’>I—|—2

= In the following, consider only > (spring force)

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 30

Bremen

= First of all, compute Kij:

0
Kii = a—xiﬁ'(xh X;)

0 X;: — X;
BT

Ox; \" 7 1% — x;||

—1-[Ix; = ;|| = (x; — x;)- (ﬁ(i-__xi)-ﬁ
S 0
1% — x|

= k I+ L I+ lo (x; — x;)(x; x-)T
- =Xl) xP T

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

Bremen

U

= Reminder:

(G

G. Zachmann

" flg—fg

Virtual Reality & Simulation

WS

"January 2018

Mass-Spring-Systems

7. cc

VR

32

]

e
s

o

Bremen

W B

= From some symmetries, we can analogously derive:

0
" Kij= a—xjfi(xi,xj) = —Kii

Ky = 5 3) = 5 (%)

_ Ki'
an J 6Xj

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 33

e e e]

"

Bremen

Y overall Algorithm for Solving Implicit Euler Integration

" |nitialize K=0
" Foreach spring (/,j) compute Kj, Kj;, Kj;, K;; rARNPS
and accumulate it to K at the right places Kl K

Compute b = Mv' + Atf(x")

Solve the linear equation system Avt™ =p > il

= Compute x*!' =x'+ Atv''!

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

%
. cc =
:

34

Bremen

¥ Advantages and Disadvantages

= Explicit integration:
+ Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step

= Implicit Integration:
+ Unconditionally stable
+ Stiff springs work better
+ Global solver - forces are being propagated throughout the
whole spring-mass system within one time step

- Large stime steps are needed, because one step is much more
expensive (if real-time is needed)

- The integration scheme introduces damping by itself (might be
unwanted)

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 35

Bremen J
¥

" Visualization of: x(t) = —x(t)

position

i

time

= Informal Description:
= Explicit jumps forward blindly, based on current information

= [mplicit tries to find a future position and a backwards jump such that the
backwards jump arrives exactly at the current point (in phase space)

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

]

"

VR &

36

Bremen

Y Demo

G. Zachmann

®00 Mass Spring System Demo

Display a menu i

http://www.dhteumeuleu.com/dhtml/v-grid.html

Virtual Reality & Simulation WS ‘January 2018

Mass-Spring-Systems

37

Bremen ;%

@ Mesh Creation for Volumetric Objects

= How to create a mass-spring system for a volumetric model?
= Challenge: volume preservation!

= Approach 1: introduce additional, volume-preserving constraints
= Springs to preserve distances between mass points

= Springs to prevent shearing

= Springs to prevent bending N
= No change in model & solver required .v\ ¢
" You could also introduce o —wg S d
"angle-preserving springs" that ./
exert a torque on an edge v
O

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 39

Bremen

U

= Approach 2 (and still simple): model the inside volume explicitly
= Create a tetrahedron mesh out of the geometry (somehow)

= Each vertex (node) of the tetrahedron mesh becomes a mass point,

each edge a spring

= Distribute the masses of the tetrahedra (= density X volume) equally

among the mass points

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

. CG %

VR =

40

Bremen

Y

= Generation of the tetrahedron mesh (simple method):

= Distribute a number of points uniformly (perhaps randomly) in the
interior of the geometry (so called "Steiner points")

= Dito for a sheet/band above the surface

= Connect the points by Delaunay triangulation (see my course
"Computational Geometry for CG")

= Anchor the surface mesh within the tetrahedron mesh:

= Represent each vertex of the surface mesh by the barycentric
combination of its surrounding tetrahedron vertices

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems

.

41

. CG

VR

Bremen

U

.
A -
,}’:" cG =

VR =

= Approach 3: kind of an "in-between" between approaches 1 & 2

= Create a virtual shell around the two-manifold mesh

= Connect the shell with the "real" mesh by diagonal springs

i - — -

= Video:
1. no virtual shells,
2. one virtual shell,
3. several virtual shells

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems 42

Bremen

Y Collision Detection for Mass-Spring Systems

= Put all tetrahedra in a 3D grid (use a hash table!)

" |n case of a collision in the hash table:

= Compute exact intersection between the 2 involved tetrahedra

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

43

Bremen

Y Collision Response Bk

= Given: objects P and Q (= tetrahedral meshes) that collide
= Task: compute a penalty force
= Naive approach:

= For each mass point of P that
has penetrated, compute its
closest distance from the surface

of Q - force = amount + direction

" Problem:

= Implausible forces

= "Tunneling" (s. a. the chapter on force-feedback)

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 44

Bremen

U

= Examples:

G. Zachmann

inconsistent

consistent

<\

/13.5?\

Virtual Reality & Simulation

WS

/

"January 2018

Mass-Spring-Systems

% CG

VR

45

LS

Bremen

Y consistent Penalty Forces

1. Phase: identify all points of P that
penetrate Q

2. Phase: determine all edges of P that

intersect the surface of Q

= For each such edge, compute the exact

intersection point x;
= For each intersection point, compute a
normal n;

- E.g., by barycentric interpolation of the vertex

normals of Q

G. Zachmann Virtual Reality & Simulation WS "January 2018

Mass-Spring-Systems

46

Bremen

3 s

3 =

L 4 =
5] o

b =

2)

. CG %

VR %

3. Phase: compute the approximate force for border points

= Border point = a point p that penetrates Q and is incident to an
intersecting edge

= Observation: a border point can be incident to several intersecting edges

= Set the penetration depth for point p
to Q

d(p) = 2izi ;j(f' Z)(iXIp_) p)-n,

where d(p) = approx. penetration depth

of mass point p, x;= point of the
intersection of an edge incident to p with

surface Q, n; = normal to surface of Q
at point x;,
1

|xi — p|

G. Zachmann Virtual Reality & Simulation WS "January 2018 Mass-Spring-Systems 47

and w(x;, p) =

Bremen

Y
= Direction of the penalty force on border points:

r(p) - fo:1 W(xh p)

4. Phase: propagate forces by way of breadth-first traversal through
the tetrahedron mesh

25;1 w(pi p)((pi — p)-ri + d(pi))
> w(xi, p)

where p; = points of P that have been visited already, p = point
not yet visited, r; = direction of the estimated penalty force in

point p; .

d(p) =

G. Zachmann Virtual Reality & Simulation WS ‘January 2018 Mass-Spring-Systems

48

Bremen

@J) Visualization

Virtual Reality & Simulation

WS

"January 2018

Mass-Spring-Systems

49

Bremen

@ Video

G. Zachmann

http://cg.informatik.uni-freiburg.de

Virtual Reality & Simulation WS "January 2018

Mass-Spring-Systems

' S

. CG

VR

50

