
Virtual Reality &
Physically-Based Simulation
Mass-Spring-Systems

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 5Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Definition:
A mass-spring system is a system consisting of:

1. A set of point masses mi with positions xi and velocities vi , i = 1…n ;

2. A set of springs , where sij connects
masses i and j, with rest length l0 , spring constant ks (= stiffness) and the
damping coefficient kd

§ Advantages:

§ Very easy to program

§ Ideally suited to study different kinds of solving methods

§ Ubiquitous in games (cloths, capes, sometimes also for deformable objects)

§ Disadvantages:

§ Some parameters (in particular the spring constants) are not obvious, i.e.,
difficult to derive

§ No built-in volumetric effects (e.g., preservation of volume)

G. Zachmann 6Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Example Mass-Spring System: Cloth

2 Anonymous

virtually coupled shell system; (2) our model is able to
handle complex structures that has loops and branches;
(3) combined with a iterative position-based integra-
tor our method allows for a very stable and practical
solution; (4) the nature of our framework means it is
highly suited to massively parallel execution environ-
ments, such as, the GPU; (5) we require no o↵-line pre-
processing and the deformations are smooth even for
coarse meshes.

2 Related Work

Soft-body systems is a popular multi-discipline topic
(e.g., graphics, robotics, animation [20], and medical
[5]). Many methods and models have been proposed to
simulate deformable bodies, such as, (1) implicit sur-
faces [7], (2) finite di↵erence approaches [23], (2) mass-
spring systems [9,1], (3) the Boundary Element Method
(BEM) [13], (4) the Finite Element Method (FEM)
[18,17,6], (5) the Finite Volume Method (FVM) [22],
(6) mesh-free particle systems [20,25,8]. While specific
methods target accurate scientific/engineering simula-
tions, we focus on provide visually plausible emulations.
For example, the finite element method (FEM) targets
accurate representations of the stress/decomposition of
a model compared to more approximate systems, such
as, a mass-spring method.

The inspiring work by Grinspun et al. [11], presented
a single outer membrane method which connected the
surface using distance constraints for the edges in con-
junction with angular constraints for the faces to syn-
thesize a soft-body mesh. Our method uses only dis-
tance constraints and attempts to account for the sur-
faces finite thickness by adding ‘virtual’ shells to add
structural support (see Figure 3).

3 Method

Our approach builds upon a popular penalty-based cloth-
spring simulation concept. We use a set of intercon-
nected point-masses to represent the physical shape of
the mesh. A planar mesh surface is connected using
three types of spring, i.e., a bend, a structural, and
a shear spring, to synthesize an aesthetically pleasing
e↵ect (i.e., smooth responsive deformations). The in-
ternal forces from the springs in combination with the
topological configuration provide an interactive solu-
tion that is able to react to external forces, like gravity
and collisions, in a realistic manner.

Fig. 3 Thin Surfaces Concept - Illustrating the problem
this paper addresses and solves. (a) a thin surface can be con-
nected by any number of distance constraints, however, due
to the constraints being parallel, the surface will be unable to
keep its rigidity; (b) simple example of a flat surface attached
to a wall, the surface will bend under the influence of grav-
ity; (c) Grinspun et al. [11] presented a solution to rectify the
problem by adding angular springs to neighbouring faces; (d)
our approach solves the problem by adding ‘virtual’ parallel
layers to the surface that can be connected to provide rigidity
to the mesh so it can support itself.

Fig. 4 Point-Mass Coupling - Spatial coupling of neigh-
bouring constraints along the surface axis, which we can also
apply to the vertically projected shells.

3.1 Dynamics

We define general constraints via a constraint function
([24,19,1]). Instead of computing forces as the deriva-
tive of a constraint function energy, we directly solve
for the equilibrium configuration and project positions.
With our method we derive a bending term for the ma-
terial which uses a point based approach similar to the
one proposed by Grinspun et al. [11] and Bridson et al.
[3].

Position-based dynamics have been used for a va-
riety of systems. For example, Jakobsen [12] built his
physics engine (called Fysix) on a position-based ap-
proach. With the central idea of using a Verlet inte-
grator to manipulate positions directly. The velocities
are implicitly stored by the current and the previous
positions of the point-masses. The constraints are en-

G. Zachmann 7Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

A Single Spring (Plus Damper)

§ Given: masses mi and mj with positions xi , xj

§ Let

§ The force between particles i and j :

1. Force exerted by spring (Hooke's law):

acts on particle i in the direction of j

2. Force exerted on i by damper:

3. Total force on i :

4. Force on mj :

ji

rij

-fij

l

0

fij

ks

kd

mi mj

ri j =
xj � xi

⇥xj � xi⇥

f i js = ksri j(kxj � xik � l0)

f i jd = �kd((vi � vj)·ri j)ri j

G. Zachmann 8Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ A spring-damper element in reality:

§ Alternative spring force:

§ Notice: from (4) it follows that the total momentum is conserved

§ Momentum p = v . m

§ Fundamental physical law (follows from Newton's laws)

§ Note on terminology:

§ English "momentum" = German "Impuls" = velocity ×mass

§ English "Impulse" = German "Kraftstoß" = force × time

Remarks

f i j
s = ksri j

kxj � xik � l0
l0

G. Zachmann 9Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Simulation of a Single Spring

§ From Newton’s law, we have:

§ Convert differential equation (ODE) of order 2 into ODE of order 1:

§ Initial values (boundary values):

§ "Simulation" = "Integration of ODE's over time"

§ By Taylor expansion we get:

§ Analogously:

à This integration scheme is called explicit Euler integration

x(t + �t) = x(t) + �t ẋ(t) + O
�
�t2

⇥

ẍ = 1
m f

v(t0) = v0 , x(t0) = x0

ẋ(t) = v(t)

v̇(t) = 1
m f(t)

G. Zachmann 10Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

The Algorithm for a Mass-Spring System

forall particles i :
initialize xi, vi, mi

loop forever:
forall particles i :

forall particles i :

render the system every n-th time

f g = gravitational force

f coll = penalty force exerted by collision (e.g., from obstacles)

fi � fg + fcoll
i +

�

j , (i ,j)�S

f(xi , vi , xj , vj)

vi += �t · fi
mi

xi += �t ·vi

G. Zachmann 11Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Advantages:

§ Can be implemented very easily

§ Fast execution per time step

§ Is "trivial" to parallelize on the GPU (⟶ "Massively Parallel Algorithms")

§ Disadvantages:

§ Stable only for very small time steps

- Typically Δt ≈ 10-4 … 10-3 sec!

§ With large time steps, additional energy is generated "out of thin air",
until the system explodes J

§ Example: overshooting when simulating a single spring

§ Errors accumulate quickly

G. Zachmann 12Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Example for the Instability of Euler Integration

§ Consider the differential equation

§ The exact solution:

§ Euler integration does this:

§ Case :

⇒ xt oscillates about 0, but approaches 0 (hopefully)

§ Case : ⇒ xt → ∞ !

ẋ(t) = �kx(t)

x(t) = x0 e�kt

x t+1 = x t + �t(�kx t)

�t > 1
k

x t+1 = x t (1� k�t)⇤ ⇥� ⌅
<0

�t > 2
k

G. Zachmann 13Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Visualization:

§ Terminology: if k is large → the ODE is called "stiff "

§ The stiffer the ODE, the smaller Δt has to be

time

p
os

iti
on

ẋ(t) = �x(t)

G. Zachmann 14Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Visualization of Error Accumulation

§ Consider this ODE:

§ Exact solution:

§ The solution by Euler integration
moves in spirals outward, no
matter how small Δt!

§ Conclusion: Euler integration
accumulates errors, no matter
how small Δt!

x(t) =

�
r cos(t + �)
r sin(t + �)

⇥

ẋ(t) =

✓
–x2

x1

◆

G. Zachmann 16Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Visualization of Differential Equations

§ The general form of an ODE (ordinary differential equation):

§ Visualization of f as a vector field:

§ Notice: this vector field can vary over time!

§ Solution of a boundary value problem = path through this field

ẋ(t) = f(x(t), t)

G. Zachmann 17Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Other Integrators

§ Runge-Kutta of order 2:

§ Idea: approximate f(x(t), t) by using the derivative at positions x(t)
and x(t+ ½Δt)

§ The integrator (w/o proof):

§ Runge-Kutta of order 4:

§ The standard integrator among the explicit integration schemata

§ Needs 4 function evaluations (i.e., force computations) per time step

§ Order of convergence is: e(�t) = O
�
�t4

⇥

a1 = vt a2 =
1

m
f(xt , vt)

b1 = vt +
1

2
�ta2 b2 =

1

m
f
�
xt +

1

2
�ta1, v

t +
1

2
�ta2

�

xt+1 = xt + �tb1 vt+1 = vt + �tb2

G. Zachmann 18Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Runge-Kutta of order 2:

§ Runge-Kutta of order 4:

Euler

G. Zachmann 19Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Verlet Integration

§ A general, alternative idea to increase the order of convergence:
utilize values from the past

§ Verlet integration = utilize x(t - Δt)

§ Derivation:

§ Develop the Taylor series in both time directions:

x(t + �t) = x(t) + �t ẋ(t) +
1

2
�t2ẍ(t) +

1

6
�t3...x (t) + O

�
�t4

⇥

x(t ��t) = x(t)��t ẋ(t) +
1

2
�t2ẍ(t)� 1

6
�t3...x (t) + O

�
�t4

⇥

G. Zachmann 20Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Add both:

§ Initialization:

§ Remark: the velocity does not occur any more!
(at least, not explicitly)

x(�t) = x(0) + �tv(0) +
1

2
�t2

� 1

m
f(x(0), v(0))

⇥

G. Zachmann 21Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Constraints

§ Big advantage of Verlet over Euler & Runge-Kutta:

it is very easy to handle constraints

§ Definition: constraint = some condition on the position of one or

more mass points

§ Examples:

1. A point must not penetrate an obstacle

2. The distance between two points must be constant,

or distance must be ≤ some maximal distance

G. Zachmann 22Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Example: consider the constraint

1. Perform one Verlet integration step →

2. Enforce the constraint:

§ Problem: if several constraints are to constrain the same mass
point, we need to employ constraint satisfaction algorithms

d d

⇥x1 � x2⇥
!
= l0

x1 x2l0
~ ~d =

1

2
(||x̃t+1

2 � x̃t+1
1 ||� l0)

xt+1
1 = x̃t+1

1 + dr12

xt+1
2 = x̃t+1

2 � dr12

G. Zachmann 23Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Time-Corrected Verlet Integration

§ Big assumption in basic Verlet: time-delta's are constant!

§ Solution for non-constant Δt's:

§ Time steps are: and

§ Expand Taylor series in both directions:

and

§ Divide the expansions by and , respectively,

then add both, like in the derivation of the basic Verlet

§ Rearranging and omitting higher-order terms yields:

§ Note: basic Verlet is a special case of time-corrected Verlet

x(ti +�ti)

ti+1 = ti +�titi = ti�1 +�ti�1

x(ti ��ti�1)

x(ti +�ti) = x(ti) +
�ti
�ti�1

�
x(ti)� x(ti ��ti�1)

�
+ ẍ(ti)

�ti +�ti�1

2
·�ti

�ti �ti�1

G. Zachmann 25Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Implicit Integration (a.k.a. Backwards Euler)

§ All explicit integration schemes are only conditionally stable

§ I.e.: they are only stable for a specific range for Δt

§ This range depends on the stiffness of the springs

§ Goal: unconditionally stability

§ One option: implicit Euler integration

§ Now we've got a system of non-linear, algebraic equations, with

xt+1 and vt+1 as unknowns on both sides → implicit integration

xt+1
i = xt

i + �tvt
i xt+1

i = xt
i + �tvt+1

i

explicit implicit

vt+1
i = vt

i + �t
1

mi
f(xt+1)vt+1

i = vt
i + �t

1

mi
f(xt)

G. Zachmann 26Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Solution Method

§ Write the whole spring-mass system with vectors (n = #mass points):

x =

0

BBB@

x0
x1
...

xn�1

1

CCCA
=

0

BBBBBBB@

x0
x1
x2
x3
...

x3n�1

1

CCCCCCCA

, v =

0

BBB@

v0
v1
...

vn�1

1

CCCA
=

0

BBBBBBB@

v0
v1
v2
v3
...

v3n�1

1

CCCCCCCA

, f(x) =

0

B@
f0(x)
...

fn�1(x)

1

CA

fi =

0

@
f3i+0(x)
f3i+1(x)
f3i+2(x)

1

A , M3n x 3n =

0

BBBBBBBBBBBBB@

m0

m0

m0

m1

m1
. . .

mn�1

mn�1

mn�1

1

CCCCCCCCCCCCCA

G. Zachmann 27Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Write all the implicit equations as one big system of equations :

§ Plug (2) into (1) :

§ Expand f as Taylor series:

Mvt+1 = Mvt + �tf(xt+1) (1)

xt+1 = xt + �t vt+1 (2)

Mvt+1 = Mvt + �t f(xt + �tvt+1) (3)

(4)

G. Zachmann 28Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Plug (4) into (3):

§ K is the Jacobi-Matrix, i.e., the derivative of f wrt. x:

§ K is called the tangent stiffness matrix

- (The normal stiffness matrix is evaluated at the equilibrium of the system:
here, the matrix is evaluated at an arbitrary "position" of the system in phase
space, hence the name "tangent …")

Mvt+1 = Mvt +�t
⇣
f(xt) +

@

@x
f(xt)

| {z }
K

·
�
�tvt+1

� ⌘

= Mvt +�tf(xt) +�t2Kvt+1

K =

0

B@

@
@x0

f0
@
@x1

f0 . . . @
@x3n�1

f0
...

...
. . .

...
@
@x0

f3n�1 @
@x3n�1

f3n�1

1

CA

G. Zachmann 29Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Reorder terms :

§ Now, this has the form:

§ Solve this system of linear equations with any of the standard
iterative solvers

§ Don't use a non-iterative solver, because

§ A changes with every simulation step

§ We can "warm start" the iterative solver with the solution as of last frame

- Incremental computation

G. Zachmann 30Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Computation of the Stiffness Matrix

§ First, understand the anatomy of matrix K :

§ A spring (i , j) adds the following four 3x3 block matrices to K :

§ Matrix Kij arises from the derivation of fi = (f3i, f3i+1, f3i+2)
wrt. xj = (x3j, x3j+1, x3j+2):

§ In the following, consider only fs (spring force)

3i

3j

3i 3j

i j

Ki j =

0

B@

@
@x3j

f3i
@

@x3j+1
f3i

@
@x3j+2

f3i
...

...
@

@x3j
f3i+2 · · · @

@x3j+2
f3i+2

1

CA

G. Zachmann 31Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ First of all, compute Kii:

Ki i =
@

@xi
fi(xi , xj)

= ks
@

@xi

⇣
(xj � xi)� l0

xj � xi
kxj � xik

⌘

= ks

0

@�I � l0
�I ·kxj � xik � (xj � xi)· (xj�xi)>

kxj�xik

kxj � xik2

1

A

= ks

✓
�I + l0

1

kxj � xik
I +

l0
kxj � xik3

(xj � xi)(xj � xi)
T

◆

G. Zachmann 32Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Reminder:

§

§
@

@x
kxk =

@

@x

✓q
x21 + x22 + x23

◆
=

xT

kxk

G. Zachmann 33Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ From some symmetries, we can analogously derive:

§

§

§

Ki j =
�

�xj
fi(xi , xj) = �Ki i

Kj j =
�

�xj
fj(xi , xj) =

�

�xj
(�fi(xi , xj)) = Ki i

G. Zachmann 34Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Overall Algorithm for Solving Implicit Euler Integration

§ Initialize K = 0

§ For each spring (i , j) compute Kii, Kij, Kji, Kjj

and accumulate it to K at the right places

§ Compute

§ Solve the linear equation system →

§ Compute xt+1 = xt + �t vt+1

Avt+1 = b

b = Mvt +�tf(xt)

G. Zachmann 35Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Advantages and Disadvantages

§ Explicit integration:
+ Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step

§ Implicit Integration:
+ Unconditionally stable
+ Stiff springs work better
+ Global solver → forces are being propagated throughout the

whole spring-mass system within one time step

- Large stime steps are needed, because one step is much more
expensive (if real-time is needed)

- The integration scheme introduces damping by itself (might be
unwanted)

G. Zachmann 36Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Visualization of:

§ Informal Description:

§ Explicit jumps forward blindly, based on current information

§ Implicit tries to find a future position and a backwards jump such that the
backwards jump arrives exactly at the current point (in phase space)

time

p
os

iti
on

ẋ(t) = �x(t)

G. Zachmann 37Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Demo

http://www.dhteumeuleu.com/dhtml/v-grid.html

G. Zachmann 39Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Mesh Creation for Volumetric Objects

§ How to create a mass-spring system for a volumetric model?

§ Challenge: volume preservation!

§ Approach 1: introduce additional, volume-preserving constraints

§ Springs to preserve distances between mass points

§ Springs to prevent shearing

§ Springs to prevent bending

§ No change in model & solver required

§ You could also introduce

"angle-preserving springs" that

exert a torque on an edge

2 Anonymous

virtually coupled shell system; (2) our model is able to
handle complex structures that has loops and branches;
(3) combined with a iterative position-based integra-
tor our method allows for a very stable and practical
solution; (4) the nature of our framework means it is
highly suited to massively parallel execution environ-
ments, such as, the GPU; (5) we require no o↵-line pre-
processing and the deformations are smooth even for
coarse meshes.

2 Related Work

Soft-body systems is a popular multi-discipline topic
(e.g., graphics, robotics, animation [20], and medical
[5]). Many methods and models have been proposed to
simulate deformable bodies, such as, (1) implicit sur-
faces [7], (2) finite di↵erence approaches [23], (2) mass-
spring systems [9,1], (3) the Boundary Element Method
(BEM) [13], (4) the Finite Element Method (FEM)
[18,17,6], (5) the Finite Volume Method (FVM) [22],
(6) mesh-free particle systems [20,25,8]. While specific
methods target accurate scientific/engineering simula-
tions, we focus on provide visually plausible emulations.
For example, the finite element method (FEM) targets
accurate representations of the stress/decomposition of
a model compared to more approximate systems, such
as, a mass-spring method.

The inspiring work by Grinspun et al. [11], presented
a single outer membrane method which connected the
surface using distance constraints for the edges in con-
junction with angular constraints for the faces to syn-
thesize a soft-body mesh. Our method uses only dis-
tance constraints and attempts to account for the sur-
faces finite thickness by adding ‘virtual’ shells to add
structural support (see Figure 3).

3 Method

Our approach builds upon a popular penalty-based cloth-
spring simulation concept. We use a set of intercon-
nected point-masses to represent the physical shape of
the mesh. A planar mesh surface is connected using
three types of spring, i.e., a bend, a structural, and
a shear spring, to synthesize an aesthetically pleasing
e↵ect (i.e., smooth responsive deformations). The in-
ternal forces from the springs in combination with the
topological configuration provide an interactive solu-
tion that is able to react to external forces, like gravity
and collisions, in a realistic manner.

Fig. 3 Thin Surfaces Concept - Illustrating the problem
this paper addresses and solves. (a) a thin surface can be con-
nected by any number of distance constraints, however, due
to the constraints being parallel, the surface will be unable to
keep its rigidity; (b) simple example of a flat surface attached
to a wall, the surface will bend under the influence of grav-
ity; (c) Grinspun et al. [11] presented a solution to rectify the
problem by adding angular springs to neighbouring faces; (d)
our approach solves the problem by adding ‘virtual’ parallel
layers to the surface that can be connected to provide rigidity
to the mesh so it can support itself.

Fig. 4 Point-Mass Coupling - Spatial coupling of neigh-
bouring constraints along the surface axis, which we can also
apply to the vertically projected shells.

3.1 Dynamics

We define general constraints via a constraint function
([24,19,1]). Instead of computing forces as the deriva-
tive of a constraint function energy, we directly solve
for the equilibrium configuration and project positions.
With our method we derive a bending term for the ma-
terial which uses a point based approach similar to the
one proposed by Grinspun et al. [11] and Bridson et al.
[3].

Position-based dynamics have been used for a va-
riety of systems. For example, Jakobsen [12] built his
physics engine (called Fysix) on a position-based ap-
proach. With the central idea of using a Verlet inte-
grator to manipulate positions directly. The velocities
are implicitly stored by the current and the previous
positions of the point-masses. The constraints are en-

G. Zachmann 40Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Approach 2 (and still simple): model the inside volume explicitly

§ Create a tetrahedron mesh out of the geometry (somehow)

§ Each vertex (node) of the tetrahedron mesh becomes a mass point,

each edge a spring

§ Distribute the masses of the tetrahedra (= density × volume) equally

among the mass points

G. Zachmann 41Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Generation of the tetrahedron mesh (simple method):

§ Distribute a number of points uniformly (perhaps randomly) in the
interior of the geometry (so called "Steiner points")

§ Dito for a sheet/band above the surface

§ Connect the points by Delaunay triangulation (see my course
"Computational Geometry for CG")

§ Anchor the surface mesh within the tetrahedron mesh:

§ Represent each vertex of the surface mesh by the barycentric
combination of its surrounding tetrahedron vertices

G. Zachmann 42Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Approach 3: kind of an "in-between" between approaches 1 & 2

§ Create a virtual shell around the two-manifold mesh

§ Connect the shell with the "real" mesh by diagonal springs

§ Video:
1. no virtual shells,
2. one virtual shell,
3. several virtual shells

2 Anonymous

virtually coupled shell system; (2) our model is able to
handle complex structures that has loops and branches;
(3) combined with a iterative position-based integra-
tor our method allows for a very stable and practical
solution; (4) the nature of our framework means it is
highly suited to massively parallel execution environ-
ments, such as, the GPU; (5) we require no o↵-line pre-
processing and the deformations are smooth even for
coarse meshes.

2 Related Work

Soft-body systems is a popular multi-discipline topic
(e.g., graphics, robotics, animation [20], and medical
[5]). Many methods and models have been proposed to
simulate deformable bodies, such as, (1) implicit sur-
faces [7], (2) finite di↵erence approaches [23], (2) mass-
spring systems [9,1], (3) the Boundary Element Method
(BEM) [13], (4) the Finite Element Method (FEM)
[18,17,6], (5) the Finite Volume Method (FVM) [22],
(6) mesh-free particle systems [20,25,8]. While specific
methods target accurate scientific/engineering simula-
tions, we focus on provide visually plausible emulations.
For example, the finite element method (FEM) targets
accurate representations of the stress/decomposition of
a model compared to more approximate systems, such
as, a mass-spring method.

The inspiring work by Grinspun et al. [11], presented
a single outer membrane method which connected the
surface using distance constraints for the edges in con-
junction with angular constraints for the faces to syn-
thesize a soft-body mesh. Our method uses only dis-
tance constraints and attempts to account for the sur-
faces finite thickness by adding ‘virtual’ shells to add
structural support (see Figure 3).

3 Method

Our approach builds upon a popular penalty-based cloth-
spring simulation concept. We use a set of intercon-
nected point-masses to represent the physical shape of
the mesh. A planar mesh surface is connected using
three types of spring, i.e., a bend, a structural, and
a shear spring, to synthesize an aesthetically pleasing
e↵ect (i.e., smooth responsive deformations). The in-
ternal forces from the springs in combination with the
topological configuration provide an interactive solu-
tion that is able to react to external forces, like gravity
and collisions, in a realistic manner.

Fig. 3 Thin Surfaces Concept - Illustrating the problem
this paper addresses and solves. (a) a thin surface can be con-
nected by any number of distance constraints, however, due
to the constraints being parallel, the surface will be unable to
keep its rigidity; (b) simple example of a flat surface attached
to a wall, the surface will bend under the influence of grav-
ity; (c) Grinspun et al. [11] presented a solution to rectify the
problem by adding angular springs to neighbouring faces; (d)
our approach solves the problem by adding ‘virtual’ parallel
layers to the surface that can be connected to provide rigidity
to the mesh so it can support itself.

Fig. 4 Point-Mass Coupling - Spatial coupling of neigh-
bouring constraints along the surface axis, which we can also
apply to the vertically projected shells.

3.1 Dynamics

We define general constraints via a constraint function
([24,19,1]). Instead of computing forces as the deriva-
tive of a constraint function energy, we directly solve
for the equilibrium configuration and project positions.
With our method we derive a bending term for the ma-
terial which uses a point based approach similar to the
one proposed by Grinspun et al. [11] and Bridson et al.
[3].

Position-based dynamics have been used for a va-
riety of systems. For example, Jakobsen [12] built his
physics engine (called Fysix) on a position-based ap-
proach. With the central idea of using a Verlet inte-
grator to manipulate positions directly. The velocities
are implicitly stored by the current and the previous
positions of the point-masses. The constraints are en-

G. Zachmann 43Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Collision Detection for Mass-Spring Systems

§ Put all tetrahedra in a 3D grid (use a hash table!)

§ In case of a collision in the hash table:

§ Compute exact intersection between the 2 involved tetrahedra

G. Zachmann 44Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Collision Response

§ Given: objects P and Q (= tetrahedral meshes) that collide

§ Task: compute a penalty force

§ Naïve approach:

§ For each mass point of P that

has penetrated, compute its

closest distance from the surface

of Q → force = amount + direction

§ Problem:

§ Implausible forces

§ "Tunneling" (s. a. the chapter on force-feedback)

•4

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

! rigid and deformable objects

! collisions, self-collisions, n-body environments

! memory efficient, interactive

Spatial Hashing - Summary

Collision Response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Introduction

! computation of penalty forces based on the

penetration depth of intersecting vertices

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Challenges

! inconsistent penetration depth information due to

discrete simulation steps and object discretization

! [Heidelberger, Teschner et al. 2003]

inconsistent inconsistent consistentconsistent

Q

P

G. Zachmann 45Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Examples:

inconsistent consistent

G. Zachmann 46Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Consistent Penalty Forces

1. Phase: identify all points of P that

penetrate Q

2. Phase: determine all edges of P that

intersect the surface of Q

§ For each such edge, compute the exact

intersection point xi

§ For each intersection point, compute a

normal ni

- E.g., by barycentric interpolation of the vertex

normals of Q

P

Q

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

G. Zachmann 47Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

3. Phase: compute the approximate force for border points

§ Border point = a point p that penetrates Q and is incident to an
intersecting edge

§ Observation: a border point can be incident to several intersecting edges

§ Set the penetration depth for point p
to

where d(p) = approx. penetration depth

of mass point p, xi = point of the

intersection of an edge incident to p with
surface Q, ni = normal to surface of Q
at point xi ,

and

d(p) =

�k
i=1 �(xi ,p) (xi � p)·ni�k

i=1 �(xi ,p)

�(xi ,p) =
1

⇥xi � p⇥

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

Q

P

G. Zachmann 48Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

§ Direction of the penalty force on border points:

4. Phase: propagate forces by way of breadth-first traversal through
the tetrahedron mesh

where pi = points of P that have been visited already, p = point
not yet visited, ri = direction of the estimated penalty force in
point pi .

d(p) =

⇤k
i=1 �(pi ,p)

�
(pi � p)·ri + d(pi)

⇥
⇤k

i=1 �(xi ,p)

r(p) =

Pk
i=1 !(xi ,p)niPk
i=1 !(xi ,p)

G. Zachmann 49Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Visualization

G. Zachmann 50Mass-Spring-SystemsVirtual Reality & Simulation 17 January 2018WS

Video

http://cg.informatik.uni-freiburg.de

